Module Objective
Upon completion of this module, participants should be able to describe how ethanol-blended fuels are transported and transferred as well as where the most likely points for error in these actions will exist.

Enabling Objectives
1. List common modes of transportation for ethanol-blended fuels.
2. Describe the United Nations/Department of Transportation (UN/DOT) placards and markings that will allow responders to identify ethanol-blended fuel transports.
3. Identify national resources available to provide product and mitigation information.
4. Discuss the likelihood and potential locations of incidents involving ethanol-blended fuels.
5. Methods of identifying and confirming presence in transport vehicles will also be discussed.

Instructor Note:

Module Time: 30 minutes/45 minutes

Materials:
- Activity 4.1
- Responding to Ethanol Incidents video – (Show the video segment from 6:48 to 9:30)
Introduction

Given that an increased percentage of all fuel transportation-related incidents are likely to involve ethanol or ethanol-blended fuels, it is essential that emergency responders be able to quickly and effectively identify their presence at the scene of an incident. It is important to recognize the proper placarding and marking of ethanol-blended fuels. Proper identification of ethanol and ethanol-blended fuels can ensure proper steps are taken so incidents are managed effectively.

From Field to Your Vehicle

The three most common ethanol blends transported from an ethanol product facility: denatured fuel ethanol with 2-5% hydrocarbon (like natural gasoline), Ethanol Flex-Fuels and undenatured/neat ethanol. There is a small quantity of ethanol that leaves a production facility undenatured as a beverage or industrial grade ethanol. The ultimate destination determines the mode of transport leaving a production facility. Denatured fuel ethanol is delivered to a liquid products terminal, an oil refinery, or directly to a retail fueling station. When shipping to a liquid products terminal or oil refinery, transportation by rail is the most common however cargo tank truck transport may be used for short shipping distances. Cargo tank truck transport is used to move product from liquid product terminals to retail fueling stations. Less often, cargo tank truck transport may be used for product leaving an oil refinery to deliver to retail fueling station.

Transport Placards and Markings

Ethanol and ethanol-blended fuels are identified using DOT placards and markings. Ethanol-blended fuels and gasoline are transported in various types of containers including cargo tank trucks, rail tank cars, freighter ships/ barges and pipelines.

DOT has classified hazardous materials according to their primary hazard and has assigned standardized symbols to identify the classes. Materials are grouped by their major hazardous characteristics; however, many materials will have other hazards as well. Ethanol and ethanol-blended fuels are in the flammable liquids category or DOT Class 3 hazardous materials. Placards for flammable liquids have a red background with a white flame and a “3” at the bottom on them along with their corresponding identification number. The same placarding and marking protocols are used for highway and rail shipments.
Emergency Response Information

The Emergency Response Guidebook, which includes this placarding information, is used as a resource for emergency responders when attending to an incident involving hazardous materials and dangerous goods. A safety data sheet (SDS) will also provide key safety information and product characteristics.

Hazardous Material Description

Rail tank cars and cargo tank trucks carrying ethanol-blended fuels will generally be placarded with an identification 1203 flammable placard when transporting lower ethanol concentrations up to and including E10 blended fuels (see Figure 4.1 in Participant Guide). Ethanol blends of E15 to E85 are included under the 3475 identification. The 3475 placard covers ethanol blends from E11 to E94. Denatured fuel ethanol (E95 to E99 blends) will be placarded with a 1987 flammable placard. The 1170 placard is for undenatured/ neat ethanol (E100).

Figure 4.1: Flammable 1203 Placard
Table 4.2: Ethanol Shipping Information

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Ethanol Concentration</th>
<th>Preferred Proper Shipping Name</th>
<th>Common Ethanol Blends</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 1203</td>
<td>1% - 10%</td>
<td>Gasoline</td>
<td>E10</td>
</tr>
<tr>
<td>UN 3475</td>
<td>11% - 94%</td>
<td>Ethanol & gasoline mixture</td>
<td>E15-E85</td>
</tr>
<tr>
<td>UN 1987</td>
<td>95% - 99%</td>
<td>Alcohols n.o.s.</td>
<td>Denatured Fuel Ethanol, E95 - E98</td>
</tr>
<tr>
<td>UN 1170</td>
<td>100%</td>
<td>Ethanol or ethyl alcohol</td>
<td>E100</td>
</tr>
</tbody>
</table>

Figure 4.3: UN 1203 Placards and Markings for Gasoline-Blended With up to 10 Percent Ethanol

Hazard Rating

OSHA has adopted hazardous chemical labeling requirements as a part of its recent revision of the Hazard Communication Standard, 29 CFR 1910.1200, bringing it into alignment with the United Nations’ Globally Harmonized System of Classification and Labeling of Chemicals (GHS). These implementations will affect chemical manufacturers, importers, distributors, and employers.
DOT has not adopted GHS, so current DOT placard requirements for packaging and packages remain in effect. From an awareness standpoint, emergency responders need to be aware that there is non-harmonized systems which may cause confusion as to the level of hazard an emergency responder might be dealing with.

NFPA 704 for Ethanol

The National Fire Protection Association (NFPA) 704 marking system is based on the “704 diamond” and is the system used for identifying hazardous materials found within facilities. The NFPA 704 system uses colors, numbers, and special symbols to indicate the presence of hazardous materials. Each colored square indicates the type of hazard, and the higher the number (0-4), the greater the hazard. For example, the number 4 in the blue health square indicates that a very short exposure could cause death or major residual injury (See figures 4.4 in Participant Guide).

Figure 4.4: NFPA 704 Diamond

- Health: Blue
- Flammability: Red
- Instability: Yellow
- Special: White (special notice)

Ethanol is represented by a 2 in the blue health square, indicating slight to moderate irritation. It is also represented by a 0 for instability (yellow) and a 3 for flammability (red) indicating high flammability with ignition likely under most conditions. There is no commonly accepted special character (white) for ethanol, though one may be appropriate.

Transportation Patterns

Emergency responders should be aware of areas or routes where shipments of ethanol and ethanol-blended fuels routinely pass. Denatured fuel ethanol (E95, E98) is one of the leading hazardous materials transported by rail. Unit train shipments containing 80-100 cars of denatured...
fuel ethanol (E95, E98) are commonly seen on key rail routes leaving from the Midwest and carrying products to various population and distribution centers throughout the country. To aid in familiarization of commodity patterns, railroads provide traffic flow information to bona fide emergency response agencies. The U.S. DOT Pipeline and Hazardous Material Safety Administration publishes a Guidebook for Conducting Local Hazardous Materials Commodity Flow Studies. This Guidebook is designed to support risk assessment, emergency response preparedness, resource allocation and analyses of hazardous commodity flows across jurisdictions.

Transportation via Highway

Since both gasoline and ethanol-blended fuels have very similar physical and chemical characteristics, they will be transported in the same general types of containers and tanks. The most prevalent style of transport of the blended fuels that emergency responders will encounter will be by MC-306 and Department of Transportation (DOT)-406 style cargo tanks (see Figures 4.5 and 4.6 in the Participant Guide). These cargo tanks are non-pressurized, come in a variety of sizes and configurations, and have a capacity up to 6,000-9,500 gallons depending on regional factors. The cargo tank itself may also have up to seven compartments. To permit commodity identification, placards must be visible on both sides and both ends of a transport vehicle. The second most common mode of transport for ethanol leaving a production facility is a DOT406 and MC306 cargo tank.

Figure 4.5: MC-306/ DOT-406 Cargo Tank

Instructor Note:

On the drawing, Figure 4.6 in the Participant Guide, there are outlets on the underside of the tank for on- and off-loading the product. Depending on the types of product being carried, the MC-306 is divided into compartments.

In addition to the outlets and piping on the bottom, you can see vents and caps on the top side of the tank which can fail or leak as a result of rollover accidents. Placards should be visible on all four sides making identification of the product easier.
Ethanol transported in cargo tank trucks are placarded and marked in the same manner as all other hazardous materials. Other characteristics of the cargo tank trucks are pressure and vacuum relief devices. They are typically bottom loaded and unloaded and equipped with a vapor recovery system. Safety devices on these cargo tank trucks consist of emergency shutoffs, breakaway valves for sheer protection, pressure relief devices as well as overfill and collision protection.

Transportation via Rail

Denatured fuel ethanol is regularly transported safely by rail every day. In the transportation of ethanol and ethanol-blended fuels, various routes are utilized. Methods include rail to fixed facility, rail directly to cargo tank truck and rail directly to pipeline.

The most common mode of transport for denatured fuel ethanol leaving a production facility is rail transport which is placarded with a 1987 flammable placard. Rail transportation of ethanol and ethanol-blended fuels is used to move product to fixed facilities, cargo tank truck transfer terminals and pipeline facilities. Most of the ethanol transported by rail will be in non-pressure (also referred to as a general service or low-pressure) DOT111A100W1 rail tank cars with no insulation or thermal protection (see Figures 4.7 and 4.8 in the Participant Guide). These rail tank cars have a capacity of approximately 30,000-34,000 gallons. Unlike cargo tanks which contain multiple compartments, rail tank cars usually have only one compartment.
New regulations for rail tank cars construction were published in 2015. New rail tank cars constructed after October 1, 2015 are required to meet enhanced DOT Specification 117 design or performance criteria. Existing rail tank cars must be retrofitted by 2023 in accordance with the DOT-prescribed retrofit design or performance standard.

Safety enhancements of DOT Specification 117 rail tank car:
- Full-height 1/2 inch thick head shield
- Tank shell thickness increased to 9/16 inch minimum TC-128 Grade B, normalized steel
- Thermal protection
- Minimum 11-gauge jacket
- Top fittings protection
- Enhanced bottom outlet handle design to prevent unintended actuation during a train accident
Ethanol and ethanol-blended fuels are commonly transported by unit train. A unit train consists of 80-100 rail tank cars which are all heading for a single destination.

Shippers of hazardous materials via highway and rail must comply with U.S. Department of Transportation regulations to ensure that responders have an accurate description of transported hazardous materials. For both modes, the required shipping paper entries for ethanol-related products include the amount shipped, the identification number, the proper shipping name, the hazard class, and emergency contact name and phone number. For rail shipments, a Hazmat Response Code (HMRC), or hazmat STCC number, will also be present and may aid researching response information. Remember that the contact number will provide 24x7 access to a person knowledgeable of the commodity and detailed information about the product. One of the most commonly seen response contacts is CHEMTREC® (at 1-800-424-9300). For highway transport, shipping papers will be in the cab near the driver. Rail transport requires that a crew member be in possession of the shipping papers. They will usually be carried by the conductor or foreman. They can also be obtained from each railroad by contacting their emergency phone number.

Shippers use the same placarding and marking protocols for both highway and railway transport. They are placarded on both sides and both ends. Rail tank car pressure relief devices prevent internal pressure build-up above a specified setting. They open to release pressure and then close. (See Figures 4.9 and 4.10 in the Participant Guide. Figures 4.9 and 4.10 show typical arrangements for rail tank car components. Not all components may be present rail tank cars used for transporting ethanol-related products). The most common mode of transportation for denatured fuel ethanol leaving an ethanol production facility is via rail transport. It is estimated that near 70% of all ethanol produced today will travel via rail during the path to the marketplace. Rail transport can play a significant role in the everyday operations of an ethanol production facility. For example, a 100 million gallon plant situated on a rail line can easily expect to receive and ship an average of 36 rail tank cars per day. That entails receiving raw materials and process aides while at the same time shipping fuel ethanol and other co-products to customers.
Figures 4.9 and 4.10 show typical arrangements for rail tank car components. Not all components may be present rail tank cars used for transporting ethanol-related products. Rail tank car components function similarly to those found on cargo tank trucks.

Figure 4.9: Top Fittings Arrangement—Valves

![Diagram of top fittings arrangement, including Air Inlet (Vapor) Valve, Protective Housing (optional), Liquid Valve, Vacuum Relief Valve, Chains (Required), Thermometer Well, and Tank Shell.]

Figure 4.10: Top Fittings Arrangement—Manway

![Diagram of top fittings arrangement, including Manway Cover, Manway Gasket, Manway Nozzle, Manway Cover Swing Bolts, Tank Shell, and Manway Cover Hinge.]
Transportation Logistics

The majority of the denatured fuel ethanol (E95, E98) (Identification 1987) is transported from the production facilities to liquid product terminals by rail. Liquid product terminals that do not have rail access receive denatured fuel ethanol by cargo tank truck, freighter ship/barge or pipeline. There is some transfer of denatured fuel ethanol from rail tank cars directly to cargo tank trucks called transloading. Emergency responders should be aware of the various modes of transport occurring in their areas. Increasingly liquid product terminals have added rail access to their facility. There is some denatured fuel ethanol transported by waterway via or freighter ships or barges. At this time very small amounts of denatured fuel ethanol or ethanol-blended fuel are being transported by pipeline. Ethanol shipments via pipeline may increase with greater experience.

Loading/ Unloading Operation

The images (Module 4, Slide 22) show a cargo tank truck terminal loading rack and a rail transloading facility. If your responsibilities include rail tank car loading/unloading operations, suggestions for best practice are available from the Association of American Railroads' program *Recommended Methods for the Safe Loading and Unloading of Non-Pressure (General Service) and Pressure Tank Cars* and Pamphlet 34. Both are included on your DVD.

Additional Resources

A good resource to assist in preparing for potential transportation-related hazardous materials events is the Transportation Community Awareness and Emergency Response (TRANSCAER®) Web site, http://www.transcaer.com. TRANSCAER® is a voluntary national outreach effort that focuses on assisting communities prepare for and respond to a possible hazardous material transportation incident. TRANSCAER® members consist of representatives from chemical manufacturing, transportation, distribution, emergency response agencies, and government agencies.

Summary

There are a variety of sources from which an emergency responder can gather information about chemicals involved in spill or fire incidents. Among them are Safety Data Sheets (SDS), DOT identification numbers and placards, NFPA 704 labeling system and shipping papers. Denatured fuel ethanol (E95, E98) has become one of the leading hazardous materials transported by rail. Transportation of this fuel commonly occurs via highways as well.

Instructor Note:

Ask participants:
- What are the most likely types of ethanol emergencies you can see occurring in your jurisdiction (retail fueling station incidents, production incidents, rail incidents, cargo tank truck transportation incidents, etc.)?
- Have there been recent ethanol emergencies in your jurisdiction?
- What occurred and what were the actions and impact to the community?
Purpose
To allow participants to determine the hazards associated with an ethanol emergency.

Instructor Note:

Time: 15 minutes
Materials: Figure 4.12

Instructor Directions:
1. Allow the participants to work in groups of two to three for this activity.
2. Participants should read the scenario and determine the resources available, immediate hazards, and possible actions to take.
3. After 10 minutes call time, and randomly call on groups to provide their answers.
4. Participants should mention the following:
 - What type of vehicle is this?
 - **Answer:** MC-306/ DOT-406
 - List common placards that you might find on this vehicle.
 - **Answers:**
 - 1203 placard
 - 1987 placard
 - 3475 placard
 - 1203 orange panel with flammable wording
 - What other resources might be helpful to responders in this incident?
 - **Answers:**
 - ERG
 - Safety Data Sheets (SDS)
 - Shipping papers
 - Information centers e.g. CHEMTREC® (1-800-424-9300)
 - What are the immediate concerns and hazards?
 - **Answers:**
 - Potential for fire
 - Environmental issues with runoff or fuel leaching into the soil
 - Potential sources of ignition to trigger a fire such as the welding facility nearby or overhead power lines
 - Trees and vegetation as fuel for possible wildfire
 - What possible actions might you take at this point in the situation?
 - **Answers** will vary depending on the knowledge of the class, but should include:
 - Confirming product identity
 - Determining the amount of the product left in the tank or determining the amount of product released

This last question is to allow participants to begin thinking about mitigation techniques. Remind participants that we are operating at an awareness level. The scene will soon be operating under the National Incident Management System (NIMS) and the incident command structure.
Participant Directions
For this activity you will work in groups of two to three. Read the following scenario, and answer the questions:

1. What type of vehicle is this?
2. List common placards that you might find on this vehicle.
3. What other resources might be helpful to responders in this incident?
4. What are the immediate concerns and hazards?
5. What possible actions might you take at this point in the situation?

Scenario
A cargo tank truck (see Figure 4.11) delivering fuel to the Gas ‘N Matches retail site is involved in a hit and run accident. The driver advises you that the cargo tank truck is carrying 3,000 gallons of fuel. There is a leak in one of the large pipes on the bottom of the trailer. Fuel is leaking onto the ground and running downhill toward a small welding facility.

Figure 4.11: Cargo Tank Truck